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Loop shaping design related to LQG/LTR for SISO minimum phase
plants

H. KAZEROONIt

One method of model-based compensator design for linear systems consists of two
stages: state feedback design and observer design. A key issue in recent work in
multi variable synthesis involves selecting the observer (state feedback) gain so that
the final loop transfer function is the same as the state feedback (observer) loop
transfer function. This is called loop transfer recovery (LTR) (Athans and Stein 1987,
Kazerooni and Houpt 1986, Kazerooni et at. 1985, Doyle and Stein 1981). This
paper shows how identification of the internal mechanism of the LTR provides
simple design rules with little algebra for single-input single-output (SISO) systems.
In the SISO case, the LQGfLTR reduces to computation of a compensator that
shapes the loop transfer function by (i) cancelling the zeros of the plant with the
compensator poles, and (ii) locating a new set of zeros for the compensator to shape
the loop transfer function.
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Nomenclature
A, Band C plant parameters

D( t) disturbance signal
E(t) error signal

Em(s) modelling error
Gp(s) nominal transfer function of the plant
Ga(s) actual transfer function of the plant

G state feedback gain, 1 x n
H observer gain, n x 1

Ko compensator DC gain
K(s) compensator transfer function
N(t) noise signal

n order of the plant
P(s) pre-compensator

Pi poles of the compensator
R(t) input command to the system

Ui right eigenvector of the state feedback design
Vi left eigenvector of the observer

X(t), Y(t), U(t) states, output and input of the plant
X(t), Y(t) states and output of the observer

Ya(t) actual output of the plant
Zi zeros of the compensator
Ai eigenvalues of the state feedback configuration
,ui eigenvalues of the observer
6R tracking error
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BD output deviation in response to disturbances
BMD output deviation due to modelling error

BN output deviation in response to noise signal
(J)R frequency range of the input command
(J)D frequency range of the disturbances

(J)MD frequency range of the modelling error
(J)N frequency range of noise signal

p a positive scalar

1. Introduction
Multivariable control systems can hardly be designed without the use of modern

control theory and its underlying computer algorithms. Classical control theory could
be applied to a bulk of lower order SISO industrial systems. Hence, much of modern
control theory has had little impact on the design of the most common types of
control systems. This paper is concerned with the design of compensators for SISO
systems, using the underlying principles of the modern control theory concepts of

LQGfLTR.
The modern control theory has something definite to say about improving the

design techniques for common control systems, but the mathematical nature of the
theory has proven to be a detriment to its widespread use. This paper presents an
'almost' systematic design methodology with little algebra and some rules of thumb
for designing compensators for lower order SISO systems with left half-plane zeros
(minimum phase). An engineer with experience, who does not want to get involved
with matrix differential equations, quadratic integral performance index and other
mathematical details of modern control theory should be able to follow this

methodology.
The work presented here is a frequency domain approach for compensator design

for SISO systems. We start with presenting a set of practical design specifications.
Establishing the set of design specifications gives the designers a chance to express
what they wish to happen for the controlled system. Although this set of performance
specifications does not imply any choice of control method, the control technique
presented here is a natural consequence of the way the design specifications are
formulated. Such a set allows the designers to translate their objectives into a form
that is meaningful from the standpoint of control theory. This set of performance
specifications is a contemporary and practical way of formulating the properties that
will enable the closed-loop system to operate according to the designer's choice.

2. SISO systems
We will deal with standard feedback configuration as shown in Fig. 1. It consists of

a plant Gp(S), controller K(s) forced by command R(s), measurement noise N(s) and

0(6)
R(s) y(s)E(s) r-:-: U(s)

P(s) r-.-l t--.,I K(s) I
-.

I::Ip(sJ

~:~)

Figure Standard feedback configuration.
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disturbances D(s). All disturbances are a.;sumed to be reflected at the output of the
plant. Note that all disturbances that arrive in the loop at the input to the plant can
always be reflected at the output to the plant by proper dynamic scaling of the
disturbance. The optional pre-compensator, P(s) is used to calibrate the input
command. Both nominal mathematical models for the plant and the controller are
rational transfer functions.

The dynamic behaviour of the plant, Gp(s), is modelled by the linear time-
invariant system as

X = AX + BU, Y= CX, with X E IRn, Yand U E 1R1 (1)

where

Gp(s)=C(sI-A)-lB and s=jw

For SISO systems, the compensator I«s) is considered of the form given by (2)

K(s) = K (S/Zl + 1)(S/Z2 + 1) ...(s/zm + 1) (2)
o (S/Pl + 1) (S/P2 + 1)

3. Design specifications
We propose to design the compensator K(s), for SISO systems using the principles

of LQGfLTR, such that the closed-loop system shown in Fig. 1 is stable and satisfies
the following five design specifications in frequency domain.

(i) Tracking of the input command which is bounded in magnitude and frequency
very 'closely' for all the frequency range of the input. We define the closeness of the
system output to input command by the following inequality

IY(jro) -R(jro)1 < BD. for all ro E roD (3)
IR(jro)1 .,- ., , ,

where roR is the frequency range of input. Note that eR (the tracking error), expressed
by the designer, is a small number that shows the closeness of the output to input (e.g.
for good tracking systems eR could be down to 0.05).

(ii) Rejection of all disturbances D(jro) that are bounded in magnitude and
frequency. By 'rejection' we mean

I Y(jro)1lD(jro)1 < eD' for all ro E roD (4)

where WD is the frequency range of the disturbances, eD, a small scalar expressed by
designer, represents the compliancy of the system.

(iii) Performance robustness to bounded modelling errors. The model un-
certainties fall into two classes. Lack of exact knowledge about the parameters of the
modelled dynamics constitute the first class of model uncertainties. High frequency
unmodelled dynamics form the second class of model uncertainties. Here we deal with
the first class of uncertainties. The second class of uncertainties are discussed in item
(iv). One of the primary purposes of using feedback in control systems is to reduce the
performance sensitivity of the system to parameter variations of the plant. The
parameters of a system may vary with age, with changing environment (e.g. ambient
temperature), due to changes in the parameters of the hardware of the controller. Also
modelling errors from numerical round-off errors induced by the digital computer

...(sip" + 1)' n > m
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may exist, while constructing the mathematical model of the controller. Conceptually,
sensitivity to modelling errors is a measure of the effectiveness of feedback in reducing
the influence of parameter variations on system performance. If the bounded
modelling error in the system is CJGp(jro), then the output for a given input R(jro) will
be

..[Gp(jw) + c5Gp(jw)]K(jw) .Y(]w) + c5Y(]w) = 1 + [Gp(jw) + c5Gp(jw)]K(jw) R(]w) (5)

where [Gp(jw) + c5Gp(jw)] and [Y(jw) + c5Y(jw)] are the true model and the true
output of the plant, respectively. A system has performance robustness if the ratio of
the deviation of the system output c5Y(jw) to the nominal output Y(jw) is 'small'. To
provide performance robustness to modelling error, one would like to guarantee the
following inequality for the system

Ic5Y(jw)1
< BMD, for aU w E WMD (6)

IY(jw)1

where roMD is the frequency range in which the modelling error <5Gp(jro) occurs.
(iv) Stability robustness to bounded unmodelled dynamics. One can have errors

from several sources. These include: intentional approximation of higher order
dynamics by lower order models; neglecting fast actuator and sensor dynamics;
neglecting some or all bending and torsional dynamics; ignoring far away poles,
minimum and non-minimum phase zeros; and small time delays. These uncertainties
in the plant can drive a nominally stable system into instability. Hence the
compensator has to make the system robust to unstructured uncertainties in the plant.
We deal with this robustness via Nyquist's criterion.

(v) Output insensitivity to noise at higher frequencies. By 'insensitivity to noise'
we mean that the output Y{jro) is not polluted by noise N{jro) or

~ < B.,. for all ro E ro., (7)
IN(jw) I ..' .,

where WN is the frequency range of noise. eN is a small scaler specified by the engineer
and represents the allowable fluctuation of the output in response to measurement
noise.

The above design specifications do not imply any design method; they only allow
the designers to express what they want to have in the system in a form that is
meaningful from the stand point of the control theory. One must translate the above
design specifications into mathematical terms. Referring to Fig. 1 the nominal output
of the plant Y(s) and the error signal £(s), are

Y(s) = Gp(s)K(s)~R(s) + 1 -D(s) -Gp(s)K(s) N(s) (8)

1 + Gp(s)K(s) 1 + Gp(s)K(s)

1 ~, , 1

1 + Gp(s)K(s)

~

On examining the above two equations, the five design specifications can mathemati-
cally be expressed as inequality constraints on the loop transfer function Gp(jw)K(jw).

(i) Considering (9), inequality (10) must be satisfied to guarantee that the output
follows the input command with tracking error of f:Ro
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( ' ) , )I <GR' for all WEWR tJuJ

11 +Gp JW K(Jw

A more conservative bound is given by inequality (11),

1
IGp(jw)K(jw)l> 1+-, for all WEWR (11)

GR

Since for a good tracking system GR is a small number, therefore the loop transfer
function, IGp(jw)K(jw)1 must be very large (inequality (11)) for all W E WR to guarantee
the closeness of the output to input,

(ii) For rejection of disturbances D(jw) as expressed by inequality (4), inequality
(12) must be satisfied,

11 + Gp(jw)K(jw)1 < eD' for all WE WD

A more conservative bound is given by inequality (13).

IGp(jw)K(jw)l> 1 + ,--,
BD

Inequality (13) means that the loop transfer function, IGp(jw)K(jw)l, must be very
large for all the frequency range of the disturbances (i.e. for all w E roD) to guarantee
the rejection of the disturbance.

(iii) Gp(s) does not express the true dynamic behaviour of the plant. The actual
plant dynamic Ga(jw) could be written as Ga(jw) = G p(jw) + <5Gp(jw), where <5Gp(jw)

is modelling error. The compensator has to take into account the errors due to
modelling errors to ensure the performance. The output error due to modelling is
given by <5Y(jw) = Ya(jw) -Y(jw), where Ya(jw) is the actual output of the plant, in

the frequency range we have modelled the plant. We call this frequency range WMD'
After some algebra

.for all W E WD

I<5Y(jw)1 1 x Ic5Gp(jro)1 14
IY(jro)1 11 + Ga(jro)K(jro) I IGp(jro)1 ( )

To reduce the error from modelling, IGa(jro)K(jro) I has to be very large for all the
frequency range where the modelling error of the plant occurs.

Ic5G (jro)111 + Ga(jro)K(jro)1 > IG ( ~ )1 ,for all ro E roMD (15)
p ]ro 6MD

Since jGp(jro)I» Ic5Gp(jro)l, from the above inequality, the sensitivity transfer function
11 + Gp(jro)K(jro) I must guarantee the following inequality for performance
robustness.

= ,,"c_,,"

Ic5G~(ja»111 + Gp(jw)K(jw)j > IG ( .
)1p ]W BMD

A more conservative bound is given by inequality (17).

..Ic>G (jw)1IGp(]w)K(]w)1 > IG ( ~ )1 + 1, for all WE WMD (17)
p ]W BMD

For good performance robustness (small BMD)' IGp(jw)K(jw)1 must be chosen as a
large number.

( 16)for all W E WMD,
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(iv) Stability robustness: suppose Ga(jw) represents the true dynamics of the plant
that contains all the unmodelled modes. Figure 2 shows Ga(jw) and the nominal
model Gp(jw) of the plant for some frequency range. Practitioners always observe the
high frequency modes in experimentally derived frequency response of the plant.

Let Ga(jw) = Gp(jw) [1 + Em(jw)], where Em is the multiplicative error due to
unmodelled dynamics. Em(jw) is the best educated guess of the error on evaluation of
the true dynamic of the system. One could determine a conservative bound for the
error function by taking measurements and comparing the actual and nominal
outputs.

We use Nyquist's criteria to guarantee the stability of the closed-loop system in the
presence of unmodelled dynamics. Suppose the nominal system is closed-loop stable.
By Nyquist's criteria (Fig. 3), for stability of the closed-loop system in the presence of
unmodelled dynamics the following inequality must be satisfied.

IGa(jw)K(jw) -Gp(jw)K(jw)1 < Id(jw)l, for all 0 < w < 00 (18)

where Gp(jw)K(jw) = -1 + d(jw) (Fig. 3). Note that inequality (18) is valid even
when the system is unstable and the count around -1 must be considered for stability
analysis (Lehtomaki et at. 1975). Inequality (18) states that the deviation of the loop
transfer function (because of the uncertainties) must be such that the actual loop
transfer function stays away from point -1 for all 0 < w < 00. If any part of the
loop transfer function deviates from its nominal value such that it passes point -1, then
the counts around point -1 may change and stability may not be guaranteed. This

M
A
G
N IGaljCA))1

/
T
U
D
E j\

Log(Y))

Figure 2. Actual and nominal plant dynamics.

.Imag

Real-1

Gp(jw)K(jw)

Ga (jw)K(jw)

Figure 3. Nyquist's criterion.
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concept is extensively described by Lehtomaki et ai. (1975). Substituting for d(jw) in

inequality (18)

IGa(jw)K(jw) -Gp(jw)K(jw)1 < 11 + Gp(jw)K(jw)l, for all 0 < w < (X) (19)

Considering Ga(jW) = Gp(jw) [1 + Em(jw)] inequality (19) can be written as

IGp(jw)K(jw)1 1
11 + Gp(jw)K(jw)1 < IEm(jw)I' for all 0 < w < (X) (20)

At high frequencies approximation (21) is true

IGp(jw)~~11 + Gp(jro)K(jro)1 ~ IGp(jro)K(jro)1

Hence for stability robustness to high frequency unmodelled dynamics, we should
guarantee inequality (22) at high frequencies (Lehtomaki et al. 1981).

1

(21)

IEIft(jro)1 (22)

(v) For insensitivity to noise as stated by inequality (7), inequality (23) must be

guaranteed.

(only at high frequencies)IGp(jw)K(jw)1 <

IGp(jw)K(~ (23)11 + Gp(jw)K(jw)1 < BN, for all WE WN

or

8NIGp(jw)K(jw)1 <
1+BN

Inequality (24) simply states that the loop transfer function IGp(jw)K(jw)1 must be
very small for all w E WN to guarantee the insensitivity of the output to the noise (BN is
usually chosen as a very small number).

The design specifications stated above on the loop transfer function IGp(jw)K(jw)1
are pictured graphically in Fig. 4. Note that the stability robustness to high frequency
unmodelled dynamics requires small gain for the loop gain at high frequencies while
the performance robustness to modelling error, tracking and disturbance rejection
require large loop gain at low frequencies. The loop gain must be shaped to cross over
before the frequency range of unmodelled dynamics. No rules are given for the shape

(24), for all ro E roN

..
I G p (jc.J)K(jc.J) I

w!M
A
G
N
I
T
U
D
E

Y~m~~)1..
log!,",)

c.>o

Wr-D ""
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Design specifications on IGp(jw)K(jw)l.Figure 4.
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of the loop transfer function at mid-frequencies (around the neighbourhood of the
cross-over frequency). The cross-over frequency and the phase margin have histori-
cally been used to investigate the relative stability. Since this method investigates the
relative stability by the direct analysis of the Nyquist criteria, it does not need to
consider the phase margin as a tool for stability criteria. Note that inequality (18)
establishes a conservative bound for the error. This bound guarantees the stability of
the closed-loop system in the presence of uncertainties in the magnitude and
regardless of the phase in the plant.

If the compensated system does not satisfy the stability robustness specifications,
the system may become unstable. If one cannot meet the stability robustness
specifications:-at high frequencies by clearing off the design specification of Fig. 4, it is
necessary to c6nsider the higher-order dynamics (if at all possible) when modelling the
system. Adding the higher-order dynamics to the system allows for weaker stability
robustness specifications at higher frequencies. If higher-order dynamics cannot be
determined, it is necessary to compromise on values of 6R and 6D (larger 6R and 6D or
smaller (OR and (OD). The small frequency range of tracking and disturbance signals
will allow designers to meet strong sets of stability robustness specifications at high
frequencies. To achieve a wide range of tracking and disturbances, designers should
have a good model of the plant at high frequencies and consequently, a weak set of
stability robustness specifications at high frequencies. Because of the conflict between
the desired frequency range of tracking signals (and also disturbances) and stability
robustness to high frequency dynamics, it is a struggle to meet both sets of
specifications for a given modelled uncertainty. The frequency range of tracking
cannot be selected to be arbitrarily wide if a good model of the plant does not exist at
high frequencies, while a good model of the plant at high frequencies makes it possible
to retain good disturbance rejection and tracking (small 6R and 6D) for a wide
frequency range (large (OR and (OD).

4. Design procedure
The objective is to design a compensator, K(s) such that Gp(s)K(s) passes through

the constraints given in Fig. 4. One traditional method of designing K(s) consists of
two stages. The first stage concerns state-feedback gain design (Klein and Moore
1977). A state-feedback gain G is designed so that the closed-loop system in Fig. 5 is
stable or equivalently

(Ailn-A+BG)ui=On, i=1,2,...,n
} (25)

real (AJ < 0, Ui #0

where Ai and Ui (i = 1,2, ..., n) are closed-loop eigenvalues and eigenvectors of state
feedback configuration.

0 ~

~ )'.l.~-I"".(f:
x

~

Figure 5. State feedback configuration.
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In the second stage, an observer gain H is designed to make the first stage
realizable (Luenberger 1971). Figure 6 shows the structure of the observer. For
stability of the observer the following equality must be guaranteed.

VT(Jl.i/n-A+HC)=O~, i=1,2,...,n
} (26)

real (Jl.J < 0, vT # 0

where Jl.i and vT (i = 1,2, ..., n) are the closed-loop eigenvalues and left eigenvectors of
the observer. Combining the state feedback and observer designs (Fig. 7) yields the
unique compensator transfer function matrix given by

K(s) = G(s/- A + BG + HC)-1 H (27)

The closed-loop system shown in Fig. 7 is stable iff the loops in Figs. 5 and 6 are
stable (separation principle). In this paper, a different approach in design of Hand G
is taken. First, one designs a stabilizing H (stabilizing H implies an H that A -HC has
eigenvalues in the left half-plane) such that the loop transfer function C(s/ -A) -1 H in
Fig. 6 meets the frequency-dependent design specifications. Later we mention how to
design a stabilizing H such that the design specifications are satisfied in frequency
domain. In the second stage of the compensator design, a stabilizing state feedback
gain G is designed to guarantee that the final loop transfer function Gp(s)K(s)
maintains the same loop shape that C(s/ -A) -1 H achieved via filter design at the first

stage. This is the principle behind loop transfer recovery (Athans and Stein 1987,
Kazerooni and Houpt 1986).

I(

~ H~~-~:.[;J-.O'" ~

Figure 6. Observer configuration.
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Figure 7. Closed-loop system.

Summary of eigenstructural properties of LTR
Historically, the LTR method is the consequence of attempts by Doyle and Stein

(1979,1981) to improve the robustness of linear quadratic gaussian (LQG) regulators.
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In their seminal work, Doyle and Stein address the problem of finding the steady state
observer gain that assures the recovery of the loop transfer function resulting from full
state feedback. First, they demonstrate a key lemma that gives a sufficient condition
for the steady-state observer gain such that LTR takes place. To compute the gain,
they show that the infinite time-horizon Kalman filter formulation with 'small' white
measurement noise covariance yields an observer gain that satisfies the sufficient
condition for the loop-transfer recovery.

The eigenstructure properties of LTR for a general multi-input multi-output
system has been discussed by Kazerooni and Houpt (1986) and Kazerooni et at.
(1985). Some of those properties for SISO systems are listed here.

(i) If G is chosen such that limit (28) is true as p approaches zero for any non-
singular (m x m) W matrix

.jPG-+WC

then K(s) approaches pointwise (non-uniformly) towards expression (29)

[C(sl -A)-lB)]-lC(sl -A)-l H (29)
and since Gp(S) = C(sl -A) -1 B, then Gp(s)K(s) will approach C(sl -A) -1 H

non-uniformly.
(ii) The finite zeros (Davison and Wang 1974) of the compensator K(s) are the

same as the finite zeros of C( sl -A) -1 H.

(iii) If p approaches zero then all the eigenvalues of the compensator K(s), approach
the zeros (including ones at infinity) of the plant.

Since the number of zeros of two cascaded systems [G p( s) and K( s)] is the sum of
number of zeros of both systems in the limit, the zeros of Gp(s)K(s) after cancellation
are the same as zeros of K(s) or C(sl -A) -1 H. Similar arguments can be given for the

poles of Gp(s)K(s). The poles of K(s) cancel out with the zeros of the plant. Therefore
the poles of Gp(s)K(s) will be the same as the poles of Gp(s) or C(sl-A)-lH.
The above comment concerning pole-zero cancellation explains the eigenstructure
mechanism for LTR. This argument does not prove the equality of Gp(s)K(s) and
C(sl -A) -1 H as p approaches zero. In summary, the poles of K(S) approach the zeros
of the plant and the zeros of K( s) approach the zeros of C( sl -A) -1 H. The cancellation

mechanism in the multi-input multi-output systems has been explained in detail by
Kazerooni and Houpt (1986). We are planning to design a K(s) of the structure given

by (2).
According to property (iii), P1, P2, ..., Pn must be equal to zeros of the plant;

therefore, the zeros of Gp(S)K(S) will be equal to Zl, Z2, ..., Zm only. The design centres
on locating the zeros of K(s) on appropriate locations such that Gp(s)K(s) has the
same zeros as C(sl -A) '-1 H. Once the zeros of K(s) are located, the poles of K(s) will
be chosen equal to zeros of Gp(s) to make K(s) a rational transfer function. In
choosing the zeros of K(s), we consider the following two cases of stable and unstable
systems with left half-plane zeros.

5. Examples
The following two examples depict the design method for minimum phase plants.

Example 1
Consider a stable plant whose dynamics are given by the following rational
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transfer function
(s + 1)

(31)(s/5 + 1)(10s + 1)
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Figure 8. Gain and phase plots of the transfer function given by (31).

The design procedure centres around location of one zero (n -1 = 1) to clear off the
design specifications while the loop is stable. We choose the zero at -10 to guarantee
the stability of the system. We also choose a loop gain of 563.64 such that the loop
passes through the design specifications. Note that the location of this zero is
somewhat arbitrary. Figure 9 shows the plot of (32)

(silO + 1)563.64 ~---"-- (32)
(s/5 + 1)(10s + 1)

It is desired to design a compensator such that the plant satisfies the design
specifications with respect to Fig. 4. In brief they are: WR = 10 rad/s; WD = 4 rad/s;
WN = 200 rad/s; () = 10 dB; (X = 20 dB; 0" = 10 dB. IEm(jw)1 is given in Fig. 8.

Since the zeros of Gp(s) will be cancelled out by the poles of the compensator K(s),
the compensated loop transfer function Gp(s)K(s) at low frequencies consists of the
zeros of the K(s) and the poles of Gp(s). We are looking for a set of zeros [zeros of
K(s)] such that the transfer function consisting of this set of zeros (maximum ofn-1
finite zeros) and the poles of the Gp(s) clears off the design specifications while the
stability is guaranteed. Figure 8 shows the magnitude and phase of the denominator of
Gp(s) with unity gain given by (31)
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specifications while the stability is preserved from Nyquist's plot. The maximum
choice of choosing the finite zeros of K(s) is 2 (n -1 = 2). We choose two zeros of
compensator at -0.1 and -1.0, respectively. The transfer function consisting of the
set of chosen zeros and the poles of Gp(s) is shown in Fig. 12 (solid line). This loop
transfer function is given by (36).

(10s + 1){s + 1)
118.53 .I"' ": (36)(10s -1)(2s + 1)(s/3 + 1)

50

40
D 30

E

C
I 0 I

B -10'

E -20

L -30

-40

.1 1 10 1000

RAD/SEC

The Bode plot of Gp(s)K(s) and the transfer function in (36).

100

Figure 12.

Figure 13 shows the Nyquist plot of the loop transfer function in (36) for stability
guarantee. Considering the zeros of the plant the compensator transfer function is

given by (37).

(10s+ 1)(s + 1)
(37)K(s) = 23.71 (s120() + 1) (S73OO+-1)(S/2 + 1)

.(0)-0

M-60A
G

-80

-100

-120
-120 -100 -80 -60 -40 -20 0 20 40 60

REAL

Nyquist's plot of transfer function given by (36).Figure 13.

The dashed plot in Fig. 12 shows the plot of Gp(s)K(s) for the compensator designed
above. It could be seen that the loop transfer function Gp(s)K(s) satisfies the design
specifications laid down by the engineer at lower and higher frequencies. By putting
the poles of the compensator at the zeros of the plant, LTR was obtained and as shown
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in Figs. 12, 14 and 15. The solid line is (36) while the dashed line represents Gp(s)K(s)
in Figs. 12, 14 and 15.
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Figure 14.
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Nyquist's plot of Gp(jw)K(jw) and the transfer function given by (36).

Figure 15.
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Nyquist's plot of Gp(jw)K(jw) and the transfer function given by (36) at high
frequencies.

6. Conclusion
In the LTR, the eigenvalues of the compensator K(s) cancel the zeros of the plant.

By exploring the eigenstructure of the LTR, when loop transfer recovery takes place,
we provide a simple design procedure for SISO systems. The sufficient condition for
LTR and the stability of the system is that the plant be minimum phase.
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