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Loop shaping design related to LQG/LTR for SISO minimum phase

H. KAZERCONLT

One method of model-based compensator desien for Tinear systems consists of two
stupes: slate feedback design and observer design. A key issue in recent work in
multvariable synthesis imvolves selecting the observer (state feedback) gain so that
the Bnal leop transler function is the same as the state feedback |observer) loop
transfer function. This is called loop transfer recovery { LTI (Athans and Stein 1987,
Kazeroone and Houpt 1986, Kazerooni e wl. 1985 Doyle and Stein 1981, This
paper shows how identfication of the nternnl mechanism of the LTR provides
simple design rules with little algebra for single-input single-output (S150) systems,
In the S15C) case. the LOMG/LTR reduces 1o computation of 8 compensator that
shapes the loop transfer function by (1) cancelling the zeros of the plant with the
compensator poles, and (i) locating i new sct ol zeros [or the compensator to shape

the loop trarsfer function.

Nomenclature

A, B oand O

plant paramelers

it disturbance signal
E{t]  error signal
E, 50 modelling error
(51 nominal transfer function of the plant
G (51 actual wansfer function of the plam
O state leedback guin, 1 =n
H  observer gain, no= 1
Ky compensator DO gam
K151 compensator transfer function
N{tl nodse signal
i order of the plant
s pre-compensator
;o poles of the compensalor
Rirl anpul command to the system
u;  right eigenvecior of the state feedback design

X Yoo, Ui
X, ¥iw)

left cigenvector of the observer
states, output and input of the plani
states and outpul of the observes

Yo actual output of the plant
=, zeros of the compensator
4 cigenvalues of the state feedback configuration
i elgenvalues of the ohserver
bp  lracking error
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£y oulputl deviation in response 1o disturbances
Ly output deviztion due to modetling error

£y output deviation in response to neose signal

i Irequency range of the input command

ey, ITequency range of the disturbances
iy lrequency ranpe of the modelling errar

any lrequency range ol noise signal

¢ o positive scalar

. Introduction

Multivariahle contral systems can hardly be designed without the use of modern
control theory and its underlving computer algorithms. Classical control theory could
be applied to o bulk of lower order SISO industrial systems. Henece, much of madern
control theory has had hittle unpact on the design of the most common types of
control systems, This paper 1= concerned with the design of compensators for SISO
systems. using the underlying principles of the modern control theory concepts of
LG TR,

The modern control theory has something defimite to say aboul mmproving the
design techniques for common control systems, but the mathematical nature of the
theory has proven Lo be @ detriment to its widespread use. This paper presents an
wlmost” systematic design methodolegy with little algebra and some rules of thumb
for designing compensators for lower order SIS0 systems with left hall-plane zeros
Iminimum phasel. An engineer with experience, who does nol want to get involved
with matres differential equations, quadratic mtegral performance index and other
mathematical details of modern contral theory should be able 1o follow this
methodology

The work presented here is a frequency domain approach for compensator design
for SIS0 svstems, We start with presenting a set of practical design specifications
Establishing the set of design specifications gives the designers a chance to express
what they wish to happen lor the controlled system. Although this set of performance
specifications does not imply any chowe of control method. the control technigue
presented here is a natural consequence of the way the design specifications are
formulated. Such a set allows the designers 1o translate their ohjectives into a form
that 15 meaningful from the standpoint of control theory, This set of performance
specifications 1s & contemporary and practical way of formulating the properties Lhal
will enable the closed-loap system to operate accerding 1o the designer’s choice,

2. 5150 systems
we will deal with standard feedback confipuration as shownn Fig. 1 1 consists of
a plant G,4s), controller Kis) lorced by commind R(s). measurement noise N(s) and

Rls]

Eisl u(s)
Pls) Kig) l—

Figure | Swandard feedback configuration,
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disturbances D{s1. All disturbances are assumed 10 be reflected at the output of the
plant. Note that all disturbances that arrive o the loop at the inpul to the plant can

alwavs be

at the output 1o the plant by proper dynamic scaling of the
disturbance. The optional pre-compensator, Pls) is used to calibrate the mput
command, Both pominal mathematical models for the plant and the controller are
rational transfer functions

The dynamic behaviour of the plant, G (3}, 15 modelled by the linear time-
invariant system s

X=4X+BU, Y=CX, with XeR" Yand /! R i1
where
G lg) = Cls! 'R and s=jw
For SISO systems, the compensator K(s) is considered of the form given by (2]

.omT=m (2

3. Design specifications

We propose 1o design the compensator Kis), for SISO svstems using the principles
of LOGLTR, =uch that the closed-loop system shown in Fig. | is stable and satisfies
the following five design specificalions in

frequency domain.

(1) Tracking of the input command which 15 bounded in magnitude and frequency
very ‘closely” for all the frequency range of the mput, We deline the closeness ol the
system outpul o npul command by the following inequality

!}I|__I|.'.II R|_||l'.rl'
Ri fe)

<&y, Torall wemg 13

where wiy is the [requency range of input. Note that £, (the tracking error), expressed
by the designer, is o small number that shows the closeness of the output to input (e.g
for good tracking systems £y could be down to 0053,

{11) Rejection of all disturbances DY jen) that are bounded in magnitude and
frequency, By ‘rejection’ we mean

| ¥ feu
[ L Jees)

— iy, forall wewy (4]

where tiy, is the frequency range of the disturbances, £, a small scalar expressed by
designer. represents the compliancy of the system

(i11) Performance robusiness to bounded modelling errors. The model un-
certainties fall into two classes. Lack of exact knowledge about the parameters of the
modelled dvnamics constitute the first class of model uncertainties. High frequency
unmadelled dynamics form the sécond class of medel uncertainties. Here we deal with
the first class of uncertamties. The second class of uncertaimties are discussed in item
(iv), Ome of the primary purposes of using feedback in control systems 18 Lo reduce the
performance scnsitivity of the system to parameter variations of the planl, The
paramcters of a system may vary with age, with changing environment (eg. ambient
temperature), due to changes in the parameters of the hardware of the controller. Also
modelling errors from numerical round-off errors mduced by the digital computer
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may exist, while consiructing the mathematical model of the controller, Conceptually,
sensitivity to modelling errors is a measure of the elfectiveness of feedback o reducing
the influence of parameter variations on system performance. If the bounded
modelling error in the system is 4G feo), then the output for a given input R( jio) will
oc

. . [G ) + &G4 jm) TR jea)
Vi) +a ¥l i) = ———= : : Ri jen) (3
PO TG, jw) + 66, jw) K o)

where [Gol fo) + 86, [ jeo) | and [ ¥ jes) + 8¥{ jw)] are the true model and the true
output of the plant, respectively, A system has performance robustness if the ratio of
the deviation of the system output & Y1 fd to the nominal output ¥ fe) is small’. To
provide performance robustness o moedelling error, one would like 1o guarantes the
[ollowing inequality for the system

[ ¥ jean)|

— < Eyps  dorall  we gy, {6)
[ VU e

where @y 15 the frequency range in which the modelling error G ,( fw) occurs,

(iv) Stability robustness to bounded unmodelled dynamics, One can have errors
rom several sources, These include: intentional approximation of higher order
dynamics by lower order models; neglecting fast actuator and sensor dynamies;
neglecting some or all bending and torsional dynamics; ignonng far away poles,
minimum and non-minimum phase zeros; and small time delays, These uncertainties
in the plant can drive a nominally stable system into instability. Hence the
compensator has to make the syslem robust to unstructured uncertainties in the plant,
We deal with this robustness via Nyquist’s criterion.

(vl Output insensitivity Lo nodse at higher frequencies, By Yinscnsitivity to nojse’
we mean that the output ¥ jen) 1s not polluted by noise NI jo) or

| Y[ g

ine Torall ey, [7)
Nl N+ f

where ey, 15 the frequency range of noise. &y 15 a small scaler specified by the engineer
and represents the allowable fluctuation of the cutpul n response (0 measurement
TIISE.

The above design specifications do not imply any design method; they only allow
the designers to express what they want te have in the system in a form that is
meaninglul fram the stand point of the contrel theory, One must translate the above
design specifications into mathematical terms. Referring to Fig. | the nominal output
of the plant Y(#) and the error signal Eis), are

G lsIks) G5 K80

] i
¥is)= e S DU —

T (5] — — N5} i &)
L+ (s h s |+ G (sh K] 1+ Glsiks)

Els)=-

=} —Ri5) + ———— B(3)
|+ G [sIRis) 1+ G i8I Kis)

- — M) (9]

[+ Gyl shKls)

Oin examining the above twa equations, the five design specifications can mathemati-

cally he expressed as inequality constraints on the loop transter lunction G | jehK( o
(il Considering {9}, inequality (10) must be satisfied to guarantee that the output

follows the input command with tracking error of fg.
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1
e e <, Torall cerewy, ]
11+ G, oK ja)] " : ki
A more conservative bound is given by inequality {11},
l
[T ) K fen)] = 1 - —, Torall e wy (Ll
E§
Since for a good tracking system & is a small number, therefore the loop transfer
fursction, [G ol e KA fer must be very large (inequality (111 forall w2 oy, to guarantee
the closeness of the cutput to mput.
(1) Tor regection of disturbances I je) as expressed by inequality (4), inequality
(12} must be satislied.

|

- — < gy, forall wew gl
[1 4 Co g ) Ki )| i TSR SR (13

A more conservalive bound 15 given by inequality {13},

; L L
[l gy KL fre[ =1 4 — for all  wewy [13)
in

Inequality (13) means that the loop transfer function, |G [ jw)K{ jw)l, must he very
lirge for all the frequency range of the disturbances (12 for all 2wy, to guarantee
the relection ol the disturbance.

i) G s) does not express the true dynamic behaviour of the plant. The actual
plant dynamic G, fio) could bewntlen as Gl jo) = G| jor) + 66 ( jw), where 80| juu)
is modelling error. The compensator has to take into account the errors due to
modelling errors to ensure the performance. The outpul error due to modelling is
given by SV ji) = Y[ for) — Y je), where Y[ fro) is the actual cutput of the plant, in
the frequency range we have modelled the plant. We call this frequency range oy,
After some algebra

[ ¥ jeca)] _ l G )|

= — e [14
| ¥ Jea [T G feah K feed] [LE i (e o

['o reduce the error from modelling, |G ( jow) K{ jeo)| has to be very large for all the
frequency range where the modelling error of the plant occurs.
|G i)

[L+ €[ jeo) B joo)| = for all o ey, {13)

ol e g
Since |G ( fuw)| = 3G [ jo)l, [rom the above inequality, the sensitivity transfer function
[l + Gt g KIjen)| must goarantee  the following inequality for performance
rabustness
(e

|+ Gl jen K )| = ————.
: i 'Gpl: |":"-':||":'.j.l|

for all o & oy {16}

A mare conservative bound 15 given by inequality (17),
S 3 A i) 2
|G fed K fa)| = ——0 + 1, forall @msmyy, (17
! [ el e

For good performance rebusiness (small cyp, G0 o) K jo)) must be chosen as a
laree number.
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{1v] Stability robustness: suppose G( je) represents the true dynamics of the plant
that contains all the unmodelled modes. Figure 2 shows G, jw) and the nominal
mode] G,{ fro) of the plant for some frequency range. Practitioners always observe the
high frequency modes in experimentally derived frequency response of the plant.

Let Gl jeh= Gl ju[1 + E, ( jw)], where £, is the multiplicative error due to
unmodelled dynamics. £_( ju) is the best edueated puess of the error on evaluation of
the true dynamic of the system: One could determine 4 conservative bound for the
error function by taking measurements and comparing the actual and nominal
DLULpus,

W nse Nyguist's criteria to guarantee the stability of the closed-loop svstem in the
presence of unmodelled dynamics, Suppose the nominal system is closed-loop stable.
Hy Nyquist's criteria { Fig. 3). for stability of the closed-loop system in the presence of
unmaedelled dynamics the lollowing inequality must be satisfied,

[0l fod K foo) — G0 foabk B o] < |dl je)l. for all < o (18}

where Gl el K jio) = — 1 +dl jeod (Fig. 3). Note that inequality (18) is valid cven
when the system is unstable and the count around — 1 must be considered for stability
analysis | Lehtomaki er al. 1975} Incquality ( 18) states that the deviation of the loop
transler function (because of the uncertainties) must be such that the actual loop
transfer function stays away [rom point —1 for all 0 <w <o I any part of the
loop transter function deviates [romits nominal value such that it passes point — 1, then
the counts arcund point - 1 may change and stability may not be guaranteed. This

=N

|Gl jenl|
|E,,,Um||

o e B R R e R 4

Logleal

Frgure 20 Actual and nominal plant dynamecs.

d

=1
/ Gpljal®] jes)

G, [l o)

Figure 3. MNyguist's criterion
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concepl is extensively described by Lehtomaki e af. [1975), Substituting for df jw) in
meguality (18)

[l S K o) — G| feal K )| = 01 A f'r'Plf Sl K e, for all O=we o (19)

Considering G { ji) = G jw) [ + E,(jw)] inequality (19) can be written as

|Cral ey K Jral] ] "
P g e forall Jcwmeo (200
1 G ) K jead| E. ()
At high frequencies approximation (21) s true
|Gl Je) KA e e
IR = |G e KA ju) (21}

(14 G, (e KI jeo)|
Hence [or stability robusiness to high lrequency unmaodelled dynamics, we should
puarantee incguality (22) at high Mrequencies (Lelitomaki er al, 1981)
- = & ] +
670 e LK )| = TR tenly at high frequencies) (22
1 0 1]

(v For insensitivity to noise as stated by inequality (71, inequality (23) must be
guaranieed,

|7l _.in'.n:.l:lf.([ jeul|

T+ G.UaKij < By, forall ey (23]
1+ G bR )
or
WA ; Ewy
[, [ feod KA jor)| < i for all ey {24
' £y

Inequality {24) ssimply states that the loop transfer function [G,( jw) K{ je)| must be
very small for all @ £ ey, to puarantee the insensitivity of the output to the noise (g, is
usually chosen as a very small number),

The design specifications stated above on the loop transfer function |G| jeapbK( je)|
are pictured graphically in Fig. 4, Note that the stability robustness to high frequency
unmodelled dynamics requires small gain for the loop gain at high frequencies while
the performance robustness to modelling error, tracking and disturbance rejection
require large loop gain at low frequencies. The loop gain must be shaped 1o cross over
before the frequency range of unmodelled dynamics, No rules are given for the shape

1GplJeodKl Jeo) |

Mo /ﬁ

A ,'//'}"/%, |1/E p[Jea] |

s |£4 7 ; Nl T

N g,
ogles L

L .

U .

D N

E (%)

Figure 4, Desipnospecifications on (G0 fol K fod].
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of the loop transfer function al mid-frequencies (around the neighbourhood of the
cross-over [requencyl. The cross-over frequency and the phase margin have histori-
cally been used to investigate the refative stability. Since this method investigates the
relutive stability by the direct analysis of the Nyquist criteria, it does not need to
consider the phuse margin as a tool for stability criteria. Note that inequality (18)
establishes 4 conservative bound for the error, This bound guarantees the stability of
the closed-loop system in the presence of uncertainties in the magnitude and
regardless of the phase in the plant,

If the compensated system does not sausfy the stability robustness specifications,
the system may become unstable. If one cannot meet the stability robustness
speaifications ut high frequencies by clearing off the design specification of Fig, 4, it is
necessary to consider the higher-order dynamics (if at all passible) when modelling the
system. Adding the higher-order dynamics to the system allows for weaker stability
robustness specifications at higher frequencies. If higher-order dynamics cannot be
determined. it 1s necessary 1o compromise on values of e and & (larger £y and &, or
smaller wy and eyl The small frequency range of tracking and disturbance signals
will allow designers to meet strong sets of stability robustness specifications at high
Irequencies. To achieve a wide range of tracking and disturbances, designers should
have a pood maodel of the plant at high frequencies and conseguently, a weak set of
stability robustness specifications at high frequencies. Because of the canflict between
the desired frequency range of tracking signals (and also disturbances) and stability
robustness to high frequency dynamics, it is a strugele to meet both sets of
specifications for a given modelled uncertamty. The frequency range of tracking
cannot be selected to be arbitranly wide if a good model of the plant does not exist at
high frequencies, while a good model af the plant at high [requencies makes it possible
to retain good disturbance rejection and tracking (small oy and &,) for a wide
frequency range {large iy and my).

4. Design procedure
'he objective 15 1o design a compensator, K{s) such that &, (s)Kis) passes through
the constraints given in Fig, 4 One traditional method of designing Kis) consists of
two stages, The first stage concerns state-leedback gain desipn (Klein and Maoore
L977). A state-feedback gain G is designed so that the closed-loop system in Fig. 5 is
stable or equivalently
(41, — A+ BGwu,=0,, i=12 ....nl
(25)
real {4, =0, u, =0 |

where & and w; (0= 1,2, ., n) are closed-loop cigenvalues and eigenvectors af state
feedback conhguration,
0 b "

5 J
: : il

Figure 5

¥
(]

State feedback confipuration.
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In the second stage, an observer gain H is designed to make the first slape
realizable {Luenberger 1971) Figure 6 shows the structure of the obsérver. For
stability of the observer the following equality must be guaranteed.

vl — A+ HC =0T, i=1,2..n
(26

PRSREEir

real (i) < 0, 1 # 0

where poand of (i= 1,2, .., n} are the closed-loop eigenvalues and left clgenveciors of
the observer. Combining the state feedback and observer designs (Fig. 7) vields the
unigue compensator transfer function matrix given hy

Kisl=0Hsl — A+ BG+HO) 'H (27}

The closed-loop system shown in Fig. 7 is stable iff the loops in Figs. 5 and 6 are
stable (separation principle). In this paper, a different approach in design of H and
is taken, First, one designs a stabilizing H (stabibizing H implies an { that 4 — ¢ has
cigenvalues in the left half-plane) such that the loop transfer function sl — 4) "' H in
Fig. & meets the frequency-dependent design specifications, Later we mention how to
design a stabilizing H such that the design specifications are satisfied in frequency
domain, In the second stage of the compensator design, a stahilizing state feedback
gain ¢ is designed Lo gosrantee that the final loop transfer function G (s K s
maintains the same loop shape that C{sf — 4) ' H achieved via filter design at the first
stage. This is the principle behind loop transfer recovery (Athans and Stein 1987,
Eazerooni and Houpt 1986),

Figure 6, Observer configuralion,

Figure 7, Closed-loop system,

Sumitnary of elgenstructural properties of LTR
Historically, the LTR method is the consequence of attempts by Dovle and Stein
(1979, 198 1) to improve the robostness of linear quadratic gaussian { LOG) regulators,
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[0 their seminal work, Dovle and Stein address the problem of finding the steady state
ehserver gain that assures the recovery of the loop transfer lunction resulting from [ull
stale feedback. First, they demonstrate o key lemma that gives a sufficient condition
for the steady-state observer gain such that LTR takes place. Te compute the gain,
they show that the infinite time-honzon Kalman filter formulation with ‘small’ white
measurement noise covariance yields an observer pain that satisfies the sufficient
condition for the loop-transfer recovery,

I'he eipenstructure properties of LTR for a general multi-input multi-outpus
systern has been discussed by Kageroom and Houpt (1986) and Kazcrooni er al
11985), 5ome of those properties for 5150 systems are hsted here,

{1} I & is chosen such that limit (28) is true as p approaches zero for any non-
singular (m o= m) W omatrix

PG WE (28)
then Kiz) approaches pointwise [non-umformly) towards expression | 29)
[CisI — AV B " Clal — 4 H { 24)

and since G {s) = Cisl — 4) " * B, then G (s)K(5) will approach C(sf — 4)"'H
non-uniformly.

{ii] The finite zeros [ Davison and Wang 1974) of the compensator K(s) are the
same as the finite zeros of Clsf — ) " H.

(iii) If pupproacheszero then all the eipenvalues of the compensator Kis), approach
the zeros (including ones at mnfinity) of the plant,

Since the number of zeros of two cascaded systems [Gols) and Kis)] s the sum of
number of zeros of both systems in the limit, the zeros of G (s)K{s) after cancellation
are the same as zeros of Kis) or Cisf — A) "1, Similar arguments can be given for the
poles of G,(5)K{s). The poles of Kis) cancel out with the zeros of the plant. Therelore
the poles of G,(5)K{s) will be the same as the poles of G, (s) or O(s/ — 4)"'H
The above comment concerning pole-zero cancellation explains the eigenstructure
mechanism for LTR. This argument does not prove the equality of Gois)Kis) and
(sl — A) ' Has papproaches zera. ln summary, the poles of K(5) approach the zeros
of the plant and the zeros of Kispapproach the zerasof C(sl — A} ' H. Thecancellation
mechanism in the multi-input multi-outpul systems has been explained in detail by
Kazeroont and Houpt (1986). We are planning to design a Kis) of the structure given
by (21

According to property (i), py, 2. p, must be equal to zeres of the plant,
therefore, the zeros of G,(S)K(S) will be equal to 2, 2. ..., 7, only, The design centres
on locating the zeros of K(s) on appropriate focations such that G (s)Kis} has the
same #eros as Clsl — A1 Y H. Onee the zeros of Kis) are located, the poles of K51 will
be chosen equal to zeros of G,ls) to make Kis) a rational transfer function. In
choosing the zeros of K(s), we consider the following two cases of stable and unstable
svstems with left hall-plane zeros.

5. Examples
The following two examples depict the design method for minimum phase plants,

Example 1
Consider a stahle plant whose dynamics are given by the following rational
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transfer function
(54 1)

G lsj=10————
W) = 1 e os + 1

{30)
It is desired to design a compensator such that the plant satisfies the design
specifications with respect to Fig. 4. In briel they are: wy = 10 rad/s; wy, =4 rad/s:
why =200 rad/s; § = 10 dB; 2 = 20dB; ¢ = 10dB. |E,{ jw)| is given in Fig. 8.

Since the zeros of G {s) will be cancelled out by the poles of the compensator Kis),
the compensated loop transfer function G_(5)K(s) at low frequencies consists of the
zeros of the K{s) and the poles of G_(s). We are looking for a set of zeros [zeros of
K(5)] such that the transfer lunction consisting of this set of zeros (maximum of n— 1
finite zeros) and the poles of the G, (s) clears off the design specifications while the
stability 15 guaranteed. Figure § shows the magnitude and phase of the denominator of
Go(s) with unity gain given by (31)

1

(5/5+ 1)(10s + 1) (31)

IW/Eg {Jaal|
0 20 b i
E O ot s

5 -80
-100
=120
-140

i 0 100 1000
RAD/SEC

=40
=60
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g “B80
]
n 00

E-zo
E

s 140}
Teor \
=180

i 100 1000

1 10
RAD/SEC

Figure 8. Gain and phase plots of the transfer function given by (31).

The design procedure centres around location of one zero (n— 1 = 1) to clear off the
design specifications while the loop is stable. We choose the zero at — 10 to guarantee
the stability of the system, We also choose a loop gain of 56364 such that the loop
passes through the design specifications. Note that the location of this zero is
somewhat arbitrary. Figure 9 shows the plot of {32)

(5104 1)

63 s+ (105 + 1) 4
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specifications while the stahility is preserved Irom MNyguist's plet. The maximum
choice of choosimng the finite seros of Kis)is 2 (n— 1 =2}, We choose two zeros of
compensator at — 1 and — PO respectively. The transler function consisting of the
sct of chosen zeros and the poles of (5] is shown in Fig. 12 {solid line). This loop
transfer function is given by (36),

11453 (108 + 165+ 1)
T 10s— 1125+ s 3+ 1)

(36}

50
40
E’ 30
L =20
-3
-40
-50— . s

I 1 100 1000

10
EADSSEC

Figure 12 The Bode plet of G (5)K(5) and the transfer function in (36).

Figure 12 shows the Nyguist plot af the loop transfer function in (36) for stability
puarantee, Considering the zeros of the plant the compensator transfer function s

a7
).

given by (3

K(s)=2371 T (37)

o -
co=l a0
=20
1 40t 1
M L
A S0
G
=g 1
=120 i ; R
-120 -00-80-60 -40-20 O 20 40 &0

AEAL

Fipure 13, Nyguist’s plot of ransfer function given by {36).

The dashed plot in Fig. 12 shows the plot of G (s1K{5) for the compensator designed
above. Tt could be seen that the loop transfer function (7,5 K(s) satisfies the design
specifications laid down by the engineer at lower and higher frequencies. By putting
the poles of the compensator at the zeros of the plant, LTR was obtained and as shown
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i Figs. 12, 14and 15, The solid line 15 (36} while the dashed line represents G, (51K 5)
i Figs. 12, 14 and 15 '

AL e

=0Q |

-120 N . . . ; "
=120 -100 -80 60 -q0 -20 0 20 40 60
AEAL

Figure |4, Nygust's plot of G0 jed K ) and the transler function given by (36),

0.z ; —
0.0 S T
a =~ w~10000
i 0.2t o 1
p 0.8 ¥ :
p -06 L 3
c -08 e .
-lay 1
I
=12 ) eo=lOO 3
.-.'lq .
-16 ca=100]
=3} I LY
-11-10 -9-B-7-6~-5=4=3-2-1 0 I
REAL

Freure 130 MNyguist's plot of G i K( jo) and the transfer Tunction given by {36) at high
frequences,

0. Conclusion

[n the LTR, the ¢igenvalues of the compensator K(s5) cancel the zeros of the plant.
By exploring the eigenstructure of the LTR, when loop transfer recovery takes place.
we provide a simple design procedure for SISO systems. The sufficient condition lor
LTR and the stability of the system is that the plant be minimum phase,
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